Our Experts Reveal the Best Python Frameworks for ETL

What is an ETL in software? An ETL Framework (short for Extract, Transform, Load) is one of the most critical first steps needed for creating a successful data warehouse. Because the truth is, it’s not as simple as retrieving data from multiple sources, dumping it en masse, and calling it a day. Data needs to be prepped and normalized to make it easier for organizations to analyze them.

The ETL process is easy to understand in principle. Extraction retrieves the data from multiple sources and with often varying protocols. Next, it transforms the raw data to make it optimized and ready for your data systems. Finally, the data is loaded into the system in the most efficient way possible.

There are many tools and languages to do ETL, but a Python framework is one of the top choices for a reason. Mainly because it’s easy to use, plus it has an extensive selection of third-party libraries and plugins specifically for ETL, so developers need not code everything from scratch.

Python also uniquely balances agility and power, making it the language that a growing portion of developers enter the industry with for various types of businesses. Check out our Python prototyping case study for a biopharmaceutical firm.

This post will cover examples of ETL frameworks, which are the easiest and most comprehensive way to approach ETL in Python. It covers the entire process from extraction to loading and has all the tools and support systems you’ll ever need.


What is Bonobo ETL Framework

Bonobo ETL is a relatively lightweight and easy-to-use ETL framework. It’s aimed at anyone with even the most basic Python knowledge, making the tool extremely accessible to data scientists and coders. The nature of the framework can be summed up with its tagline, “data processing for humans.”

Bonobo ETL Framework

How it Works

Part of the accessibility of a Bonobo ETL framework is in its methodology. Here, data is treated as a stream that goes through the ETL process (extracting, transforming, and loading) in a first-in, first-out (FIFO) order. 

Because Bonobo is just a stream of data rows, the entire pipeline can be represented as a graph using the graphviz library, enabling developers to inspect and design pipelines visually.

Using this visual graph approach, developers can design complex data transformation processes relatively easily in Bonobo ETL. Functions can be combined and chained together, then executed as a single Python file. And the flow doesn’t even have to be linear – they can diverge and converge at node points using conditional logic to process data as needed.

Pros of Bonobo ETL Framework

The biggest reason to use Bonobo is its ease of use. In fact, this ETL framework is aimed at smaller projects run by independent coders and individuals. Bonobo is nothing but Python code and should be easy to pick up for even Python newbies. At the same time, the minimalistic nature of Bonobo gives it a fast performance.

The visual graph approach is also a welcome feature that makes process visualization very easy. Debugging and editing is just a matter of removing or rearranging nodes. Plus, there are plenty of excellent resources and tutorials online to get anyone up and running.

All of these make Bonobo ETL frameworks an excellent tool for beginners wanting to learn ETL methods.

But despite the simplicity, Bonobo can be a flexible and robust tool. It can extract data simultaneously from multiple sources and protocols, such as CSV, SQL, XML, JSON, and XLS, to name a few. Its functionality is also expandable with great plugins like Docker, SQLAlchemy, and Jupyter.

Cons of Bonobo ETL Framework

The limitation of a Bonobo ETL framework is that it can only handle smaller data sets, which is the original intent of the developers. Thus, it cannot tackle big data applications for larger organizations.

The way Bonobo handles data (as a series of rows in nodes) is also relatively simplistic, making it difficult to perform analysis work on the dataset as a whole. It’s the reason why Bonobo is a poor choice for advanced statistical analytics and data science operations.

Lastly, the development future of Bonobo ETL is uncertain. It’s currently at the alpha stage, with version 1.0 yet to be released.

When to Use Bonobo ETL Framework

Due to its accessibility and limitations, Bonobo ETL is ideal for small-scale projects or organizations that deal with smaller data sets. It’s also great as a beginner’s tool to learn the ropes or experiment with ETL processes.

However, for larger companies with mission-critical data warehouses, a Bonobo ETL framework is just too unreliable and limited at this point.

Mara ETL Framework

Like Bonobo ETL frameworks, a Mara ETL framework is also a lightweight ETL framework for Python developers who want a simple way to create ETL functionality without having to code it from scratch. It’s aimed as an alternative to Apache Airflow but with a more straightforward approach.

Mara ETL Framework

How Mara ETL Framework Works

The main draw of a Mara ETL framework is reducing ETL complexity. It does this by using several assumptions, which, while greatly simplifying things, can tend to limit your options in certain situations.

One of these is that it’s only compatible with PostgreSQL as the database management system. Nor does it support in-app processing – all database operations must be done via command line tools. Every part of the ETL pipeline also needs to be written as declarative Python code in Mara ETL.

But these assumptions aside, Mara is a pretty simple tool to use. The framework supports several UI options right out of the box, including a command line UI (based on pythondialog) and a web interface. You can use either UI to inspect and debug pipelines as they’re running quite quickly.

Pros of Mara ETL Framework

Despite the apparent limitations, Mara ETL is relatively easy to use. It shares the same simplistic approach and even visual interface as Bonobo. In fact, it could even be argued that Mara offers quite a bit more visual control and information through its web interface, making debugging and development easier.

All of these make Mara ETL framework development a rather fantastic experience.

Plus, unlike Bonobo, Mara can comfortably work with big datasets, which gives the platform better flexibility and performance in real-world projects.

Cons of Mara ETL Framework

The biggest negative for a Mara ETL framework is also what gives it its strength – the assumptions. For instance, if you don’t plan on using or switching to PostgreSQL, Mara is out of the window.

Mara ETL is also currently not supported in Microsoft Windows. You’ll need to use solutions like Docker or the Linux Windows Subsystem to get around this limitation.

When to Use Mara ETL Framework

Mara ETL frameworks are aimed at developers who want a more straightforward way to do ETL than what more complex libraries or frameworks offer.

Check out our custom software development services

Pygrametl ETL Framework

Pygrametl ETL frameworks can lay claim as one of the earliest ETL frameworks in Python still in use today. Released back in 2009, it has evolved into a mature, production-ready ETL tool often used in critical industries like finance and healthcare. While not as widespread as other tools, Pygrametl is nevertheless one of the more robust and powerful ETL frameworks available.

How Pygrametl ETL Framework Works

The Pygrametl ETL framework eschews the diagram or visual node approach of other tools and frameworks. Instead, it adopts an object-oriented method. Standard ETL functions like connecting to data sources and processing operations are abstracted and encapsulated in objects, which can then be imported into Python code.

Thus, creating ETL routines is as easy as instantiating the relevant Pygrametl objects in a Python code, then calling its function. Data objects allow developers to add in or remove data rows easily. Pygrametl ETL also supports more complex operations like changing dimensions.

Pros of Pygrametl ETL Framework

Because it works just like any Python API, it’s easy to integrate Pygrametl ETL frameworks into existing Python code. It’s even compatible with the Jython, opening up the possibility of interfacing with JBDC drivers or existing Java programs within your ETL process.

For seasoned Python developers, this helps reduce the learning curve by eliminating the need to study another platform.

Pygrametl is also blazingly fast since it runs directly in the Python code. This is in comparison to other ETL solutions that rely on a GUI or visual diagram, which can slow things down.

Lastly, Pygrametl has been around for more than a decade, which means it’s relatively stable. There’s also a small but active community behind Pygrametl ETL, and they offer excellent resources to help beginners get started with the framework.

Cons of Pygrametl ETL Framework

Out of all the frameworks in this list, Pygrametl ETL is arguably the least beginner-friendly. It supports no built-in visual design methodology, and creating successful ETL routines requires a good grasp of ETL concepts.

When to use Pygrametl ETL Framework

Pygrametl ETL is a good choice for production-level data warehousing for larger organizations and companies. The long tenure and real-world use cases of Pygrametl are a testament to the reliability of the framework.

Pygrametl, however, is meant for more advanced users. For beginners or smaller teams with no extensive ETL experience, other frameworks like Bonobo or Mara with visual interfaces are a better fit.

Summary of the Best Python ETL Frameworks in 2021

There are many ways to approach ETL frameworks in Python. And even smaller companies with no data science experience can set up a data warehouse with these easy-to-use ETL frameworks.

But a Python ETL framework, and data warehouses in general, is something crucial enough to most companies that they’d want to do it right. Sometimes, it’s better to get an expert company like Sphere Partners onboard to help give a solid foundation for your data warehousing efforts.

With the seemingly endless list of possibilities that Python offers businesses and individuals, it seems like it can be used towards almost anything. Just in terms of raw performance, Python can execute programs incredibly fast. Potentially, faster than machine learning programs which are widely used by companies such as Google. Check out our page that uncovers if Python is fast enough for machine learning

Are you interested in our data warehouse services? Contact us today and schedule a free consultation.

Book an ETL framework consultation with our custom software experts

<!– [if lte IE 8]>

Related Articles